
LOLbot: Machine Musicianship in Laptop Ensembles 
 

Sidharth Subramanian 
Georgia Tech Center for Music 

Technology 
840 McMillan Street 

Atlanta GA 30332-0456 
ssubramanian30@gatech.edu 

 
Jason Freeman 

Georgia Tech Center for Music 
Technology 

840 McMillan Street 
Atlanta GA 30332-0456 

jason.freeman@gatech.edu 

 
Scott McCoid 

Georgia Tech Center for Music 
Technology 

840 McMillan Street 
Atlanta GA 30332-0456 
smccoid@gatech.edu 

 
 

ABSTRACT 
This paper describes a recent addition to LOLC, a text-based 
environment for collaborative improvisation for laptop 
ensembles, incorporating a machine musician that plays along 
with human performers. The machine musician LOLbot 
analyses the patterns created by human performers and the 
composite music they create as they are layered in 
performance. Based on user specified settings, LOLbot 
chooses appropriate patterns to play with the ensemble, either 
to add contrast to the existing performance or to be coherent 
with the rhythmic structure of the performance. The paper 
describes the background and motivations of the project, 
outlines the design of the original LOLC environment and 
describes the architecture and implementation of LOLbot.  
 
Keywords 
Machine Musicianship, Live Coding, Laptop Orchestra 

1. INTRODUCTION 
This paper describes recent additions to LOLC [5], a text-
based environment for collaborative improvisation for laptop 
ensembles, which integrate machine musicians into the LOLC 
environment. LOLC’s text commands and networked 
development environment enable the creation, transformation, 
and sharing of short musical motives built from one-shot pre-
recorded audio files. LOLbot is an environment that 
interfaces with the existing LOLC client software, creating a 
machine musician that mimics some of the activities of a 
human LOLC laptop musician: it analyzes the performance of 
the laptop ensemble and uses that analysis to determine which 
LOLC commands to type to generate its own music. 
 Our goals in adding a machine musician into LOLC were 
threefold: (1) model how human performers improvise using 
LOLC, especially in terms of how they analyze rhythms and 
use this information in the improvisation process; (2) add a 
new dynamic to the performance of LOLC, given the highly 
computational approach of the machine musician as 
compared to that of the human performers; and (3) provide a 
practice tool for musicians who want to learn LOLC or 
improve their improvisational skills in the context of LOLC. 
 This paper describes the background and context in which 
LOLC and LOLbot were developed; briefly overviews the 
LOLC environment; describes the design and implementation 
of LOLbot; and discusses future possibilities. 
 

2. BACKGROUND 
Robert Rowe defines machine musicianship as the process of 
“analyzing, performing and composing music with 
computers.”[10]. Music is generally associated with the 
human creative process, and the advent of using the 
processing capabilities of a machine can be thought of as 
another avenue to inspire creativity in performance. Some 
examples of systems that analyze and react to live performers 
include Lewis's Voyager [7], Pachet's Continuator [9] and 
Weinberg’s Shimon [6]. 
 The analysis of human performance has always been a 
significant aspect of machine musicianship, using techniques 
from music information retrieval, pattern recognition, and 
machine learning. Since LOLC is a text-based environment, 
and since all LOLC musical patterns are encoded 
symbolically, the analysis of the music can be done in the 
same realm in which it was created — the syntax of LOLC. 
The machine musician has direct access to the symbolic 
musical motives created by the performers and consequently, 
the entire performance. Early examples of using pattern 
matching and text analysis in an effective way to simulate 
human intelligence go back to Eliza [12]. As described in [3], 
other examples include Instant Messaging bots that are found 
in chat systems like IRC where bots take part in conversation 
over instant messaging; and instant messaging bots in 
programming environments that describe program states and 
changes, allowing developers to collaborate while 
programming and debugging. Unlike these examples, the 
musical motives created by LOLC performers are in a syntax 
that is specific to LOLC and thus the system’s standard parser 
can be used in place of any natural language recognition 
algorithms. 
 In the realm of computer music, members of the live coding 
community have recently begun to explore the algorithmic 
generation of live code; ixi lang’s Autocode feature serves as 
a prominent example [8]. While LOLC is not itself a live 
coding language, we were nevertheless influenced by 
approaches such as that in ixi lang as we designed LOLbot. 

3. LOLC  
Inspired by computer music languages such as Impromptu [1] 
and live coding systems such as jitlib for SuperCollider [4] 
and the Co-Audicle for ChucK [11], LOLC [5] was designed 
to be a text-based performance environment (though not a 
Turing-complete programming language) that encourages 
musicians in a laptop ensemble to improvise through the 
composition and sharing of rhythmic motives. Influenced by 
works by early network music groups like the Hub's [2] 
Borrowing and Stealing, LOLC encourages performers to 
share their code and the patterns they create, giving the 
ensemble access to a growing collection of patterns to use, 
transform and loop as they improvise. (LOLC was presented 
as a performance at NIME 2011). 
 The server component of LOLC is responsible for the 
synchronization aspects of the ensemble's performance. The 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
NIME’12, May 21-23, 2012, University of Michigan, Ann Arbor. 
Copyright remains with the author(s). 



server maintains time synchronization through a shared clock; 
a pattern library consisting of all the patterns created thus far 
in performance, their definitions and their scheduling 
information; and an instant-messaging-style communication 
channel through which the ensemble members collaborate. 
The client component (see Figure 1) presents an instant-
messaging-style interface that shows both commands and chat 
messages from everyone in the ensemble. Performers can use 
this interface for the creation and scheduling of patterns and 
for access to the library of patterns created thus far in a 
performance. LOLC also includes a visualization (see Figure 
2) for audience members to watch; the visualization shows 
the performers' activities in terms of playing patterns, 
sharing/borrowing patterns from others and communication 
between performers. 

 
Figure 1. LOLC Client Component 

 

 
Figure 2: LOLC Server Visualization 

 
 Pre-recorded one-shot sound samples varying in timbre and 
pitch are available to the performers to choose from. 
Performers can syntactically create rhythmic patterns using 
these sound samples. Once the patterns have been created, 
they can be scheduled to be played at any point during the 
performance, with the option of looping them as many times 
as desired. Shown below is an example of the pattern creation 
process: 

mySound: "a1.wav" 
myPattern: mySound[q.ff,e.ff,s.n,h] 

This example shows the assignment of a user-specified WAV 

file to a variable, and the creation of a pattern using this 
WAV file. The pattern ’myPattern’ consists of a quarter and 
eighth note at fortissimo, a sixteenth note rest and half note 
which is at the default mezzo-forte (since the dynamic is not 
specified). Patterns can be defined to be of any length from 
128th notes to arbitrarily long durations. Once a pattern is 
created, it can be scheduled to play: 

play myPattern @nextMeasure 
The example above shows how a pattern can be scheduled to 
play once at the next measure. LOLC allows for great 
flexibility in the scheduling of patterns, allowing performers 
to loop patterns at particular measures, controlling how many 
times the pattern loops: 

loop myPattern @512 ~14 
The example above would schedule the pattern 'myPattern' to 
be played at measure 512 a total number of 14 times. This 
need not correspond to 14 measures, in cases of patterns like 
‘myPattern’ that are less than 1 measure long. 
 As patterns are created, they are stored in the pattern library 
that is accessible to all performers, who can then build upon 
these patterns through transformations, mimicking the 
collaboration of improvising acoustic musicians. An example 
of one of thirteen supported transformations is shown below: 

myPatternTransf: reverse(myPattern) 
The example above creates the pattern ‘myPatternTransf’ that 
is the reverse of the order of the sequence of ‘myPattern’. 

4. MACHINE MUSICIANSHIP IN LOLC  
The design of LOLbot is derived from the analytical as well 
as the improvisational process of human performers. LOLbot 
is designed to model how human performers perceive the 
music generated by the rest of the ensemble in terms of 
accents, and to improvise using this information with normal 
LOLC syntax. LOLbot does this by analyzing the music 
generated by the rest of the ensemble in detail, and playing 
patterns created by the ensemble, chosen based on its input 
parameters. LOLbot even exists on its own laptop using its 
own version of the LOLC client software. 
 Despite being modeled on human performers, LOLbot 
differs from human performers in the nature of its analysis 
and compositional process. LOLbot uses its memory to store 
detailed information on every pattern played during the 
performance, so that each pattern is considered every time it 
plays. LOLbot uses its machine precision and computational 
power to analyze the performance at the 16th note level and 
uses pattern matching algorithms to find the most suitable 
pattern among all patterns played by the entire ensemble. This 
creates a new performance dynamic in LOLC – contrasting 
the approaches of LOLbot and a human performer to the 
processes of analysis and improvisation. While LOLbot 
adopts an approach that is based purely on computation, 
human performers’ approaches are based on various factors 
like their perception, cognition and their own musical 
aesthetics.  
 LOLbot also lends itself to be a practice tool for performers 
who wish to learn how to improvise better. Performers can 
select whether they want LOLbot to reinforce the overall 
rhythmic nature of the performance or add contrast to the 
performance using the Coherence/Contrast slider. They can 
then create and schedule various patterns and observe how the 
patterns they created are used by LOLbot to either add 
contrast to the existing performance or reinforce it. By 
comparing the output of LOLbot to their own perception of 
the performance, they can discover new approaches to 
improvisatory collaboration with LOLC. 
 LOLbot’s approach to machine musicianship focuses on 
rhythm and borrowing. The syntax of LOLC lends itself to 



the creation of rhythmic patterns, which when layered upon 
each other also form new rhythms. Performers usually create 
patterns with a specific rhythmic intent and hence an analysis 
of the rhythms would be a natural avenue for a machine 
musician.  LOLC is inspired by ensemble-based 
collaboration, where it is very common for human performers 
to “borrow” patterns created by other players and either use 
these patterns verbatim or apply transformations to them. This 
means that through the course of a performance, a central 
pool of patterns is created that is available to all performers 
and the synergy associated with this level of collaboration is 
one of the most interesting aspects of LOLC. So borrowing is 
the most natural function that would be associated with a new 
performer, who is exploring the possibilities LOLC has to 
offer. The design of LOLbot reflects this by re-using patterns 
created by performers.  

5. TECHNICAL IMPLEMENTATION 
Built upon the existing architecture of LOLC, LOLbot is 
implemented using Java. The implementation of LOLbot 
consists of 3 main components: Pattern Storage, Pattern and 
Performance Analysis and Pattern Matching. LOLbot has a 
simple user interface that allows users to set its input 
parameters. 

5.1 Pattern Storage 
There are two forms of storage implemented in LOLbot. 
Every pattern is first analyzed and represented in terms of its 
accent structure (1’s and 0's). The patterns are then stored in a 
hash table, with the pattern accent structure as the key, storing 
all the patterns with the same accent structure under one key. 
   LOLbot also maintains a time-based, list-like data structure 
— the 'view' — that stores the amplitude of all the sounds 
played at any sixteenth note of the performance. This is so 
that at any point LOLbot has the capability to ascertain the 
accent structure at some measure in the future, based on all 
the patterns that are scheduled at that point. The 'view' is 
updated as the musicians schedule more patterns. 

5.2 Pattern and Performance Analysis 
In most performances, musicians using LOLC create motives 
that are highly rhythmic in nature (see section 3). 
 A sequence of 1's and 0's is used as the representation 
system for any pattern, if an accent is defined as any part of a 
pattern that has amplitude (based on the dynamics specified in 
LOLC) equal to or greater than the average amplitude of the 
pattern, and then a ‘1’ in the sequence indicates an accent. A 
sixteenth-note is considered, as the basic unit for analysis; an 
eighth note is represented by ‘10’, a quarter note by ‘1000’ 
and so on. A pattern comprised of 4 quarter notes of the same 
dynamic level would be represented at the sixteenth note level 
as 1000100010001000. For patterns consisting of sounds with 
durations smaller than 16th notes, the amplitudes of those 
sounds are added to the enclosing 16th note. Hence, all the 
analysis is done at the 16th note level.  

5.3 Pattern Matching 
LOLbot has access to all the patterns created by human 
performers in a performance, and it is from this database of 
patterns that LOLbot must choose an appropriate pattern to 
play.In order to choose a pattern to play, the metric of 
coherence/contrast is used. This metric can be set and 
changed using a slider on the LOLC client interface. The 
coherence/contrast slider has a range of values from 0 to 1. 
The value of 1 represents maximum coherence and the value 
of 0 represents maximum contrast. A pattern is said to be 
coherent with the performance if its accents match the 
‘perceived’ accents at the measure it is scheduled at. The 

metric of contrast is the opposite of coherence and represents 
how little the accents match. 
 LOLbot acts once every 16 measures so that the frequency 
of its actions loosely mirrors the density of activities of 
human performers. Hence, every 16 measures, LOLbot 
checks the ‘view’ (described in 5.1) which stores the sum of 
the amplitudes of all the sounds being played at each 16th 
note, for the next 2 measures. LOLbot then converts these 2 
measures into the accent representation system (described in 
5.2) to get the measure accent structure. (Through multiple 
performances of LOLC, we found that users often created 
patterns that were between 1 and 2 measures long, hence a 2 
measure long analysis window was adopted). 
 As described in the section 5.1, all the patterns created by 
human performers are stored in a hash table using the accent 
structures as the keys. So the calculated measure accent 
structure is then compared against the stored pattern accent 
structures in the hash table. We define a contextual hamming 
distance (CHD) metric to order the stored patterns. The 
contextual hamming distance is defined as the number of bits 
for which the measure accent structure is 1(accent) and the 
pattern accent structure is 0(no accent) i.e. the number of 
accents in the measure accent structure that are not matched 
by the pattern. All the stored pattern accent structures are 
ordered by their CHD, and in cases that 2 of them have the 
same CHD, the hamming distance between the pattern’s 
accent structure and the measure accent structure is used to 
order them. 

 
Figure 3: Choosing Patterns  

 Figure 3 shows how the process of pattern matching takes 
place. Depending on the measure accent structure being 
searched for, and the value of contrast/coherence that is set by 
the user, one of the stored pattern accent structures in the hash 
table is chosen. If the coherence/contrast slider is set to 
coherence, LOLbot chooses the pattern accent structure that 
corresponds to a low CHD from the measure accent structure 
and is hence the one that most closely matches the accents. 
Alternatively, if the coherence/contrast slider is set to high 
contrast, LOLbot chooses the pattern accent structure that 
corresponds to a high CHD. The slider can take intermediate 
values in between 0(contrast) and 1(coherence). Since all the 
stored pattern accent structures are ordered in terms of their 
CHD, depending on the number of different accent structures, 
each one would correspond to a certain proportional range on 
the slider and be chosen if the slider is set within that range. 
In figure 3, a pattern with a higher CHD is chosen, indicating 
high contrast and hence a low value on the coherence/contrast 
slider. 
 If there is more than 1 pattern with the same accent 
structure, a nearest neighbor algorithm is used to calculate the 



'distance' between the amplitudes of the pattern and the 
cumulative amplitude of the 'view', at the sixteenth note level. 
The chosen pattern is scheduled to be played at the measure 
in question by sending it to the interpreter of LOLC, e.g. if 
the pattern chosen to be played is ‘myPattern3’ and the 
measure in question was 64, LOLbot sends the following 
command to the LOLC interpreter: 

play myPattern3 @ 64 

5.4 User Interface and Operation 
The user interface of LOLbot (see Figure 4) consists of: (1) 
an ‘enable’ switch to turn LOLbot on/off, to give users the 
option to perform with or without LOLbot at their discretion; 
and (2) a contrast/coherence slider that gives the user the 
option to control what kind of patterns LOLbot chooses and 
can be modified during the performance. During 
performance, LOLbot runs on a separate laptop, running a 
dedicated copy of LOLC, and is displayed in other players’ 
interfaces and in the video projection just as any other LOLC 
musician. 
 

 
Figure 4: User Interface of LOLbot 

 

6. CONCLUSION AND FUTURE WORK 
Currently, LOLbot has been implemented using pattern 
matching techniques and analyses LOLC performances in 
terms of accents and rhythm. This is largely inspired by the 
inherent rhythmic nature of performance in LOLC and the 
syntax of LOLC that lends itself to this particular kind of 
rhythmic performance. This analysis of rhythm and accents is 
the first step towards our objective of modeling how human 
performers improvise using LOLC. We aim to model how 
performers use more advanced techniques like 
transformations in the future. 
 We tested LOLbot by means of practice performances -
where 3 performers improvised using LOLC as they would in 
a real performance, creating and borrowing patterns. LOLbot 
was run on a dedicated computer as the fourth performer. 
Through multiple practice performances using LOLbot, we 
were able to gain insight into the rhythmic structure of the 
performance at different points of time, by modifying the 
coherence/contrast slider value and seeing the effect on the 
patterns chosen by LOLbot. This in particular allowed us to 
see which patterns could contribute to the performance at 
different points of time and hence use transformations of 
those patterns to create interesting rhythms. Through these 
practice performances, we found some limitations of LOLbot 
– patterns that fit more generic accent structures were chosen 
more often than others since they were similar to the overall 
rhythmic structure at many points in a performance. This 
could be reduced by use of the coherence/contrast slider but 
we aim to address this concern in the future by adjusting the 
distance metric based on the number of times a pattern has 
previously been chosen by LOLbot. 
 Future work for LOLbot includes applying transformations 
on patterns from the pattern library to have a larger selection 
of patterns to choose from. The process of applying 
transformations to create new patterns is the next step in the 

emulation of human performance in LOLC. This serves as an 
ideal precursor to multiple machine musicians in a single 
laptop ensemble. 
 We hope to use LOLbot in performances and evaluate how 
the use of a machine musician changes the course of the 
performance, and how human performers react differently in 
a performance with LOLbot. 

7. ACKNOWLEDGMENTS 
LOLC is supported by a grant from the National Science 
Foundation as part of a larger research project on musical 
improvisation in performance and education (NSF CreativeIT 
0855758). We thank Akito Van Troyer, Andrew Colella, 
Jung-Bin Jay Yim, Sang Won Lee and Shannon Yao for their 
important contributions to the development of LOLC. 
Additional information is available at 
http://www.jasonfreeman.net/lolc/ 

8. REFERENCES 
[1] Brown, A.R. and Sorenson, A.C. Interacting with 

generative music through Live Coding. Contemporary 
Music Review, 2009. 28(1). pp. 17-29. 

[2] Brown, C. and Bischoff, J. Indigenous to the Net: Early 
Network Music Bands in the San Francisco Bay Area. 
2002. Available online at http://crossfade.walkerart.org 
/brownbischoff/IndigenoustotheNetPrint.html. 

[3] Chan, S., Hill, B. and Yardi, S. Instant Messaging Bots: 
Accountability and Peripheral Participation for textual 
user interfaces. In Proceedings of the 2005 International 
ACM SIGGROUP Conference on supporting group work 
(Sanibel Island, Florida, USA, November 06-09, 2005), 
GROUP ’05. ACM Press, New York, NY, pages 113-
115. 

[4] Collins, N.,McLean, A., Rohrhuber, J. and Ward, A. 
Live coding in laptop performance. Organised Sound, 
December 2003. 8(3). 321-330. 

[5] Freeman, J. and Van Troyer, A. Collaborative textual 
improvisation in a laptop ensemble. Computer Music 
Journal, 2011. 35(2). 8-21. 

[6] Hoffman, G. and Weinberg, G. Shimon: An Interactive 
Improvisational Robotic Marimba Player in Extended 
Abstracts Proceedings of International ACM Computer 
Human Interaction Conference (CHI 10), Atlanta, 
Georgia. 

[7] Lewis, G.E. Too Many Notes: Computers, Complexity 
and Culture in Voyager, Leonardo Music Journal, 
vol.10, pp. 33-39, 2000. 

[8] Magnusson, T. Designing Constraints: Composing and 
Performing with Digital Music Systems, Computer 
Music Journal, 2010, 34(4) , 62-73. 

[9] Pachet, F. The Continuator: Musical Interaction with 
Style In Proceedings of the 2002 International Computer 
Music Conference, Goteborg, Sweden, 2002. 

[10] Rowe, R., Machine Musicianship, Cambridge, MA: MIT 
Press, 2004. 

[11] Wang, G., Misra, A., Davidson, P., and Cook, P.R. 
CoAudicle: A Collaborative Audio Programming Space. 
in Proceedings of the International Computer Music 
Conference, Barcelona, Spain, 2005, 331– 334. 

[12] Weizenbaum, J. ELIZA – A Computer Program for the 
Study of Natural Language Communication between 
Man and Machine, Communications of the ACM, 
Volume 9, Number 1 (January 1966): 36-45. 

 

 


