

THE ARCHITECTURE OF AURACLE: A VOICE-CONTROLLED,
NETWORKED SOUND INSTRUMENT

Jason Freeman Sekhar Ramakrishnan Kristjan Varnik
Georgia Institute of

Technology
Music Department

Max Neuhaus

Zentrum für Kunst und Neue
Medientechnologie

Phil Burk
SoftSynth

Akademie Schloss Solitude

David Birchfield

Arizona State University
Arts, Media, and Engineering

ABSTRACT

Auracle is a voice-controlled, networked sound
instrument which enables users to control a synthesized
instrument with their voice and to interact with each
other in real time over the Internet. This paper describes
the architecture of the system in detail, including the
multi-level analysis of vocal input, the communication of
that analysis data across the network, and the mapping of
that data onto a software synthesizer.

1. INTRODUCTION
Auracle is a voice-controlled, networked sound
instrument conceived by Max Neuhaus and realized
collaboratively by the authors. Users interact with each
other in real time over the Internet, playing synthesized
instruments together in a group ‘jam’. Each instrument is
entirely controlled by a user's voice, taking advantage of
the sophisticated vocal control which people naturally
develop learning to speak. The project was designed to
facilitate the kinds of communal sound dialogue which
are rare in contemporary society:

[… Auracle and my earlier broadcast works are…]
proposing to reinstate a kind of music which we
have forgotten about and which is perhaps the
original of the impulse for music in man. Not
making a musical product to be listened to, but
forming a dialogue, a dialogue without language, a
sound dialogue. These pieces then are about taking
ordinary people and somehow putting them in a
situation where they can start this nonverbal
dialogue. [8]

Auracle is an entity made to give the lay public this
opportunity. It was designed to be accessible to people
without musical training or technical expertise. We
strived to create an open-ended architecture rather than a
musical composition: a system which, as much as
possible, responds to but does not direct the activities of
its users. We also sought to build a highly transparent
system, in which users could easily identify their own
contributions within the ensemble, while also remaining
engaged over extended periods of time.

2. ARCHITECTURE
Users launch Auracle from the project’s web site,
opening a graphical user interface through which they

can ‘jam’ with other users logged in from around the
world. To control their instrument, users input vocal
gestures into a microphone. Their gestures are analyzed,
reduced into control data, and sent to a central server.
The server broadcasts that data back to all participating
users within their ensemble. Each client computer
receives the data and uses it to control a software
synthesizer.

The client software is implemented as a Java applet
incorporating the JSyn plugin [2], and real-time
collaboration is handled by a server running TransJam
[3]. Data logging for debugging, usage analysis, and
long-term system adaptation is handled by an HTTP
post (from Java) on the client side and PHP/MySQL
scripts on the server side.

Figure 1. The overall architecture of Auracle.

2.1. Low-level Analysis
The initial low-level analysis of the voice computes
basic features of the audio signal over an analysis
window [10]. The incoming sound is analyzed for
voicedness / unvoicedness, fundamental frequency, the
first two formant frequencies with their respective
formant bandwidths, and root mean square (RMS)
amplitude. JSyn is used to capture the input from a
microphone, but it cannot extract the vocal parameters
we need, so we built this functionality ourselves in pure
Java using linear prediction, feeling it would be the
easiest approach to implement in pure Java with
acceptable performance and accuracy.

Raw sample data from the microphone is brought
from JSyn into Java. Once in Java, the data is
determined to be voiced or unvoiced based on the zero-
crossing count. Following Rabiner and Schafer [9], the
data is downsampled to 8192 Hz and broken into 40 ms
blocks, which are analyzed by LP for the following
characteristics: fundamental frequency, the first and
second formant frequencies, and the bandwidth of each
formant. RMS amplitude values are also calculated for
each block of input. The values for each block of
analysis are fed into a median smoothing filter [9] to
produce the low-level feature value for that analysis
frame.

2.2. Mid-level Analysis

The mid-level analysis parses the incoming low-level
analysis data into gestures. Since users are asked to hold
down a play button while they are making a sound, it
was trivial to parse vocal input based on the button’s
press and release.

Once a gesture is identified, a feature vector of
statistical parameters is created to describe the entire
gesture. The choice of features is based largely on
previous studies of vocal signal analysis for emotion
classification [1] [4] [11].

2.3. High-level Analysis
It is theoretically possible to directly transmit each 43-
element mid-level feature vector across the network and
to map that vector onto synthesis control parameters, but
we found it impractical in practice to directly address
this amount of data.

Instead, we perform a high-level analysis which
projects the 43-dimensional mid-level feature space onto
three dimensions. We were attracted to the use of
Principal Components Analysis (PCA) to generate this
projection, because it preserves the greatest possible
amount of variance in the original data set and facilitates
a self-organizing, user-driven approach.

But PCA creates a static projection; for Auracle, we
wanted a dynamic approach which could perform both
short-term adaptation — by changing over the course of
a single user session to focus on the mid-level features
varied most by that user — and long-term adaptation, in
which the classifier’s initial state for each session slowly
changes to concentrate on the mid-level features most
varied by the entire Auracle user base. To do so, we
implemented PCA using Adaptive Principal Component
EXtraction (APEX) model, which incorporates a neural
network [5] [6] [7].

2.4. Network
Each gesture’s low-level analysis envelopes, along with
the high-level feature values, are sent to a central server
running TransJam [3], a Java server for distributed
music applications. The TransJam server provides a
mechanism to create shared objects, acquire locks on
those objects, and distribute notifications of changes to
those objects. Each client sends its gesture data as a

modification to a data object which it has locked, and
the server then transmits the updated object information
to all clients in the ensemble. In this manner, all client
machines maintain all players’ analysis data in sync. By
sending only control data, Auracle maintains low
latency and high audio quality using a fraction of the
bandwidth required for audio streaming.

Java security restrictions and practical networking
issues made direct peer-to-peer communication
impossible. This necessitates a central server. However,
to mitigate the probability of a performance bottleneck,
Auracle’s architecture is designed to minimize the work
done by the server. The server is merely a conduit for
data and does no processing itself. Mapping and
synthesis operations are duplicated by all clients, but we
preferred this solution over adding load on the server.

Auracle is designed to facilitate a conversational
style of interaction, in which players respond to earlier
sounds they hear instead of planning simultaneous
gestures with other players. The analysis data is
transmitted to the server only once a complete gesture
has been detected, and data is only mapped onto
synthesis control parameters when it arrives from the
server, even when the data was created by the local
client. And the onset of gestures from different players
are occasionally shifted, and the gestures are slightly
compressed in time, in order to minimize the overlap of
gestures from different players. Because of this design,
network latency is not generally an issue, and individual
gestures need not be time-stamped to exactly
synchronize their playback on all client machines.

2.5. Mapping and Synthesis

Each client receives the data from the server and passes
it to a mapper, which generates envelopes and control
parameters for a software synthesizer. The mapper
manages an entire ensemble of synthesis instruments,
each of which is controlled by the vocal gestures of a
single player.

The synthesis algorithm, implemented entirely using
the JSyn API [2], is a hybrid of several techniques,
designed to enable the mapping of player data onto a
wide range of timbres. The synthesizer is composed of
three separate sections: an excitation source, a resonator,
and a filter bank. The initial excitation is composed of
two sources — a pulse oscillator and a frequency-
modulated sine oscillator. These are mixed and sent
through an extended comb filter with an averaging
lowpass filter and probabilistic signal inverter included
in the feedback loop. The result is sent through a bank
of bandpass filters and mixed with the unfiltered sound
to generate the final output.

Much of the low-level analysis data is mapped onto
the synthesis algorithm in straightforward ways. The
fundamental frequency envelope controls the frequency
of the excitation sources and the length of the feedback
delay line. The amplitude envelope controls the
amplitude of the excitation source, the overall amplitude
of the synthesizer, and the depth of frequency

modulation. The first and second formant envelopes are
used to set the centre frequencies of the bandpass filters,
and the Q on those filters are inversely proportional to
the formant bandwidth envelopes. The voicedness /
unvoicedness envelope of a gesture modulates the
probabilistic signal inverter between noisier and purer
timbres.

High-level feature data, on the other hand, is used to
control timbral aspects of the synthesis which evolve
from one gesture to the next but do not change within a
single gesture: the ratio of pulse to sine generators in the
excitation source, the probability of inverting the
feedback signal, and the filter Q values. In the latter two
cases, a high-level feature value defines a range within
which the parameter can vary over the course of the
gesture. Then low-level envelopes — voicedness /
unvoicedness level and formant bandwidths,
respectively — control continuous, subtle variations
within that range over the course of the gesture.

We did not want sound output to stop completely
when users were not making vocal gestures. So when a
player’s synthesizer is finished playing a gesture, it
continues sounding a quiet ‘after ring’ until the next
user gesture is received. The relationship of the vocal
gesture to this after ring is less transparent than with the
gesture itself; it is designed simply to be a quiet sound
which constantly but subtly changes.

2.6. Graphical User Interface
The focus of Auracle is on aural interaction, so the
software’s graphical user interface is deliberately sparse.

The main display area shows information about all users
in the active ensemble of players: their usernames, their
approximate locations on a world map (computed with
an IP-to-location service), and a running view of the
gestures they make (displayed as a series of coloured
squiggles corresponding to their amplitude, fundamental
frequency, and formant envelopes).

Users push and hold a large play button when they
want to make a vocal gesture. Additional controls allow
them to move to another ensemble, create a new
ensemble, and monitor and adjust audio levels. A text
chat among players within the ensemble is available in a
separate popup window.

3. DISCUSSION
Auracle was officially launched to the public in October
2004 — on the Internet, at Donnaueschinger Musiktage
in Germany, and during a live radio event on SWR. We
have been thrilled to see how Auracle engages people
ranging from non-musicians to trained singers, of many
different ages and cultural backgrounds. Inevitably,
some players are shy, have difficulty thinking of vocal
gestures, and quit after a few minutes. But we have
observed many players interacting with Auracle for over
thirty minutes, enjoying the identification of their voices
in the sounds they hear and the surprise in hearing those
transformations and the responses of others. Over time,
Auracle encourages them to create an increasing variety
of vocal sounds — whether whistling, gurgling,
shouting, or singing — as they strive to explore the

Figure 2. The Auracle graphical user interface.

boundaries of the system.
In our own regular ‘developer jams’ on the system,

we developed strategies for collaboratively structuring
our interaction over extended periods of time. Often,
one of us would suddenly start making gestures which
radically departed from the current sounds in frequency,
density, noise content, or dynamics, and the rest of the
players would gradually begin to imitate them. And
sometimes, we would use Auracle’s text chat
functionality to plan such changes more deliberately.

During the eight months beginning October 15,
2004, there were 1494 user sessions on Auracle, with
803 usernames connecting from 717 distinct hosts. The
average session length was 14.8 minutes. The majority
of those users play Auracle alone. While Auracle is still
engaging when played in this manner, it is most
interesting when users are online at the same time and
can ‘jam’ together.

We have experimented with a variety of strategies to
help users find each other online, including scheduling
regular online events and encouraging users to schedule
Auracle meetings with friends, but these techniques
have had limited success. Our most successful Auracle
events, ironically, have taken place in the physical
world, with several computers set up as kiosks on which
people can try Auracle. We are continuing to present
Auracle in this format at events such as this conference.

In the long term, we hope to draw enough users to
Auracle so that there are always ensembles of players
online. In this regard, we are focusing not only on
drawing more users to the site, but also on getting more
of them to log in and participate once they arrive. Many
users visit the site but never successfully launch Auracle
and make a sound. While we are working to improve
site documentation to help them more easily test and
configure their audio system, our informal polling
indicates that the majority of these users simply lack
computer microphones. With the growing popularity of
online audio chat and telephony applications, we hope
that computer microphones will become more
ubiquitous in the coming years.

We are also working to make Auracle more
accessible to members of the computer music
community. We are preparing much of the Java source
code for release under an open-source license, so that
others may leverage our development work in their own
projects, and we are also creating a Software
Developer’s Kit which would enable Java and JSyn [2]
developers to contribute mapping and synthesis
components to the project. By opening Auracle
development to new contributors, we hope that the
project will evolve in new ways and new directions
which we could not have envisioned ourselves.

4. ACKNOWLEDGEMENTS
The Auracle project is a production of Max Neuhaus
and Akademie Schloss Solitude (art, science, and
business program) with the financial support from the
Landesstiftung Baden-Würtemburg. We express our

gratitude for their generous support. Auracle is available
at http://auracle.org.

5. REFERENCES

[1] Banse, R., and K. Scherer. 1996. Acoustic
Profiles in Vocal Emotion Expression. Journal
of Personality and Social Psychology, 70 (3):
614-636.

[2] Burk, P. 1998. JSyn – A Real-time Synthesis
API for Java. Proceedings of the 1998
International Computer Music Conference.
Ann Arbor, MI: ICMA, 252-255.

[3] Burk, P. 2000. Jammin' on the web – a new
client/server architecture for multi-user
performance. Proceedings of the 2000
International Music Conference. Berlin,
Germany: ICMA, 117-120.

[4] Cowie, R., E. Douglas-Cowie, N. Tsapatsoulis,
G. Votsis, S. Kollias, W. Fellenz, and J. Taylor.
2001. Emotion Recognition in Human-
Computer Interaction. IEEE Signal Processing
Magazine, January 2001, 32-80.

[5] Diamantaras, K. and S. Y. Kung. 1996.
Principal Component Neural Networks. New
York: John Wiley and Sons, Inc.

[6] Freeman, J., C. Ramakrishnan, K. Varnik, M.
Neuhaus, P. Burk, and D. Birchfield. 2004.
Adaptive High-level Classification of Vocal
Gestures Within a Networked Sound
Environment. Proceedings of the 2004
International Computer Music Conference.
Miami, FL, ICMA: 668-671.

[7] Kung, S., K. Diamantaras, and J. Taur. 1994.
Adaptive Principal Component EXtraction
(APEX) and Applications. IEEE Transactions
on Signal Processing, 42 (5), 1202-1217.

[8] Neuhaus, M. 1994. The Broadcast Works and
Audium. In Zeitgleich. Vienna: Triton, 1994.
http://auracle.org/docs/Neuhaus_Networks.pdf

[9] Rabiner, L. and R. Schafer. 1978. Digital
Processing of Speech Signals. Englewood
Cliffs, NJ, Prentice-Hall.

[10] Ramakrishnan, C., J. Freeman, K. Varnik, D.
Birchfield, P. Burk, and M. Neuhaus. 2004.
The Architecture of Auracle: A Real-Time,
Distributed, Collaborative Instrument.
Proceedings of the 2004 Conference on New
Interfaces for Musical Expression. Hamamatsu,
ACM: 100-103.

[11] Yacoub, S., S. Simske, X. Lin, and J. Burns.
2003. Recognition of Emotions in Interactive
Voice Response Systems.
http://www.hpl.hp.com/techreports/2003/HPL-
2003-136.html.

