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ABSTRACT 

Auracle is a voice-controlled, networked sound 
instrument which enables users to control a synthesized 
instrument with their voice and to interact with each 
other in real time over the Internet. This paper describes 
the architecture of the system in detail, including the 
multi-level analysis of vocal input, the communication of 
that analysis data across the network, and the mapping of 
that data onto a software synthesizer. 

1. INTRODUCTION 
Auracle is a voice-controlled, networked sound 
instrument conceived by Max Neuhaus and realized 
collaboratively by the authors. Users interact with each 
other in real time over the Internet, playing synthesized 
instruments together in a group ‘jam’. Each instrument is 
entirely controlled by a user's voice, taking advantage of 
the sophisticated vocal control which people naturally 
develop learning to speak. The project was designed to 
facilitate the kinds of communal sound dialogue which 
are rare in contemporary society: 

[… Auracle and my earlier broadcast works are…] 
proposing to reinstate a kind of music which we 
have forgotten about and which is perhaps the 
original of the impulse for music in man.  Not 
making a musical product to be listened to, but 
forming a dialogue, a dialogue without language, a 
sound dialogue. These pieces then are about taking 
ordinary people and somehow putting them in a 
situation where they can start this nonverbal 
dialogue. [8] 

Auracle is an entity made to give the lay public this 
opportunity. It was designed to be accessible to people 
without musical training or technical expertise. We 
strived to create an open-ended architecture rather than a 
musical composition: a system which, as much as 
possible, responds to but does not direct the activities of 
its users. We also sought to build a highly transparent 
system, in which users could easily identify their own 
contributions within the ensemble, while also remaining 
engaged over extended periods of time. 

2. ARCHITECTURE 
Users launch Auracle from the project’s web site, 
opening a graphical user interface through which they 

can ‘jam’ with other users logged in from around the 
world. To control their instrument, users input vocal 
gestures into a microphone. Their gestures are analyzed, 
reduced into control data, and sent to a central server. 
The server broadcasts that data back to all participating 
users within their ensemble. Each client computer 
receives the data and uses it to control a software 
synthesizer. 

The client software is implemented as a Java applet 
incorporating the JSyn plugin [2], and real-time 
collaboration is handled by a server running TransJam 
[3]. Data logging for debugging, usage analysis, and 
long-term system adaptation is handled by an HTTP 
post (from Java) on the client side and PHP/MySQL 
scripts on the server side. 

 
Figure 1. The overall architecture of Auracle. 

2.1. Low-level Analysis 
The initial low-level analysis of the voice computes 
basic features of the audio signal over an analysis 
window [10]. The incoming sound is analyzed for 
voicedness / unvoicedness, fundamental frequency, the 
first two formant frequencies with their respective 
formant bandwidths, and root mean square (RMS) 
amplitude. JSyn is used to capture the input from a 
microphone, but it cannot extract the vocal parameters 
we need, so we built this functionality ourselves in pure 
Java using linear prediction, feeling it would be the 
easiest approach to implement in pure Java with 
acceptable performance and accuracy. 



  
 

 

Raw sample data from the microphone is brought 
from JSyn into Java. Once in Java, the data is 
determined to be voiced or unvoiced based on the zero-
crossing count. Following Rabiner and Schafer [9], the 
data is downsampled to 8192 Hz and broken into 40 ms 
blocks, which are analyzed by LP for the following 
characteristics: fundamental frequency, the first and 
second formant frequencies, and the bandwidth of each 
formant. RMS amplitude values are also calculated for 
each block of input. The values for each block of 
analysis are fed into a median smoothing filter [9] to 
produce the low-level feature value for that analysis 
frame. 

2.2. Mid-level Analysis 

The mid-level analysis parses the incoming low-level 
analysis data into gestures. Since users are asked to hold 
down a play button while they are making a sound, it 
was trivial to parse vocal input based on the button’s 
press and release. 

Once a gesture is identified, a feature vector of 
statistical parameters is created to describe the entire 
gesture. The choice of features is based largely on 
previous studies of vocal signal analysis for emotion 
classification [1] [4] [11]. 

2.3. High-level Analysis 
It is theoretically possible to directly transmit each 43-
element mid-level feature vector across the network and 
to map that vector onto synthesis control parameters, but 
we found it impractical in practice to directly address 
this amount of data. 

Instead, we perform a high-level analysis which 
projects the 43-dimensional mid-level feature space onto 
three dimensions. We were attracted to the use of 
Principal Components Analysis (PCA) to generate this 
projection, because it preserves the greatest possible 
amount of variance in the original data set and facilitates 
a self-organizing, user-driven approach. 

But PCA creates a static projection; for Auracle, we 
wanted a dynamic approach which could perform both 
short-term adaptation — by changing over the course of 
a single user session to focus on the mid-level features 
varied most by that user — and long-term adaptation, in 
which the classifier’s initial state for each session slowly 
changes to concentrate on the mid-level features most 
varied by the entire Auracle user base. To do so, we 
implemented PCA using Adaptive Principal Component 
EXtraction (APEX) model, which incorporates a neural 
network [5] [6] [7]. 

2.4. Network 
Each gesture’s low-level analysis envelopes, along with 
the high-level feature values, are sent to a central server 
running TransJam [3], a Java server for distributed 
music applications. The TransJam server provides a 
mechanism to create shared objects, acquire locks on 
those objects, and distribute notifications of changes to 
those objects. Each client sends its gesture data as a 

modification to a data object which it has locked, and 
the server then transmits the updated object information 
to all clients in the ensemble. In this manner, all client 
machines maintain all players’ analysis data in sync. By 
sending only control data, Auracle maintains low 
latency and high audio quality using a fraction of the 
bandwidth required for audio streaming. 

Java security restrictions and practical networking 
issues made direct peer-to-peer communication 
impossible. This necessitates a central server. However, 
to mitigate the probability of a performance bottleneck, 
Auracle’s architecture is designed to minimize the work 
done by the server. The server is merely a conduit for 
data and does no processing itself. Mapping and 
synthesis operations are duplicated by all clients, but we 
preferred this solution over adding load on the server.  

Auracle is designed to facilitate a conversational 
style of interaction, in which players respond to earlier 
sounds they hear instead of planning simultaneous 
gestures with other players. The analysis data is 
transmitted to the server only once a complete gesture 
has been detected, and data is only mapped onto 
synthesis control parameters when it arrives from the 
server, even when the data was created by the local 
client. And the onset of gestures from different players 
are occasionally shifted, and the gestures are slightly 
compressed in time, in order to minimize the overlap of 
gestures from different players. Because of this design, 
network latency is not generally an issue, and individual 
gestures need not be time-stamped to exactly 
synchronize their playback on all client machines. 

2.5. Mapping and Synthesis 

Each client receives the data from the server and passes 
it to a mapper, which generates envelopes and control 
parameters for a software synthesizer. The mapper 
manages an entire ensemble of synthesis instruments, 
each of which is controlled by the vocal gestures of a 
single player. 

The synthesis algorithm, implemented entirely using 
the JSyn API [2], is a hybrid of several techniques, 
designed to enable the mapping of player data onto a 
wide range of timbres. The synthesizer is composed of 
three separate sections: an excitation source, a resonator, 
and a filter bank. The initial excitation is composed of 
two sources — a pulse oscillator and a frequency-
modulated sine oscillator. These are mixed and sent 
through an extended comb filter with an averaging 
lowpass filter and probabilistic signal inverter included 
in the feedback loop. The result is sent through a bank 
of bandpass filters and mixed with the unfiltered sound 
to generate the final output. 

Much of the low-level analysis data is mapped onto 
the synthesis algorithm in straightforward ways. The 
fundamental frequency envelope controls the frequency 
of the excitation sources and the length of the feedback 
delay line. The amplitude envelope controls the 
amplitude of the excitation source, the overall amplitude 
of the synthesizer, and the depth of frequency 



  
 

 

modulation. The first and second formant envelopes are 
used to set the centre frequencies of the bandpass filters, 
and the Q on those filters are inversely proportional to 
the formant bandwidth envelopes. The voicedness / 
unvoicedness envelope of a gesture modulates the 
probabilistic signal inverter between noisier and purer 
timbres. 

High-level feature data, on the other hand, is used to 
control timbral aspects of the synthesis which evolve 
from one gesture to the next but do not change within a 
single gesture: the ratio of pulse to sine generators in the 
excitation source, the probability of inverting the 
feedback signal, and the filter Q values. In the latter two 
cases, a high-level feature value defines a range within 
which the parameter can vary over the course of the 
gesture. Then low-level envelopes — voicedness / 
unvoicedness level and formant bandwidths, 
respectively — control continuous, subtle variations 
within that range over the course of the gesture. 

We did not want sound output to stop completely 
when users were not making vocal gestures. So when a 
player’s synthesizer is finished playing a gesture, it 
continues sounding a quiet ‘after ring’ until the next 
user gesture is received. The relationship of the vocal 
gesture to this after ring is less transparent than with the 
gesture itself; it is designed simply to be a quiet sound 
which constantly but subtly changes. 

2.6. Graphical User Interface 
The focus of Auracle is on aural interaction, so the 
software’s graphical user interface is deliberately sparse. 

The main display area shows information about all users 
in the active ensemble of players: their usernames, their 
approximate locations on a world map (computed with 
an IP-to-location service), and a running view of the 
gestures they make (displayed as a series of coloured 
squiggles corresponding to their amplitude, fundamental 
frequency, and formant envelopes). 

Users push and hold a large play button when they 
want to make a vocal gesture. Additional controls allow 
them to move to another ensemble, create a new 
ensemble, and monitor and adjust audio levels. A text 
chat among players within the ensemble is available in a 
separate popup window. 

3. DISCUSSION 
Auracle was officially launched to the public in October 
2004 — on the Internet, at Donnaueschinger Musiktage 
in Germany, and during a live radio event on SWR. We 
have been thrilled to see how Auracle engages people 
ranging from non-musicians to trained singers, of many 
different ages and cultural backgrounds. Inevitably, 
some players are shy, have difficulty thinking of vocal 
gestures, and quit after a few minutes. But we have 
observed many players interacting with Auracle for over 
thirty minutes, enjoying the identification of their voices 
in the sounds they hear and the surprise in hearing those 
transformations and the responses of others. Over time, 
Auracle encourages them to create an increasing variety 
of vocal sounds — whether whistling, gurgling, 
shouting, or singing — as they strive to explore the 

 
Figure 2. The Auracle graphical user interface. 



  
 

 

boundaries of the system. 
In our own regular ‘developer jams’ on the system, 

we developed strategies for collaboratively structuring 
our interaction over extended periods of time. Often, 
one of us would suddenly start making gestures which 
radically departed from the current sounds in frequency, 
density, noise content, or dynamics, and the rest of the 
players would gradually begin to imitate them. And 
sometimes, we would use Auracle’s text chat 
functionality to plan such changes more deliberately. 

During the eight months beginning October 15, 
2004, there were 1494 user sessions on Auracle, with 
803 usernames connecting from 717 distinct hosts. The 
average session length was 14.8 minutes. The majority 
of those users play Auracle alone. While Auracle is still 
engaging when played in this manner, it is most 
interesting when users are online at the same time and 
can ‘jam’ together. 

We have experimented with a variety of strategies to 
help users find each other online, including scheduling 
regular online events and encouraging users to schedule 
Auracle meetings with friends, but these techniques 
have had limited success. Our most successful Auracle 
events, ironically, have taken place in the physical 
world, with several computers set up as kiosks on which 
people can try Auracle. We are continuing to present 
Auracle in this format at events such as this conference. 

In the long term, we hope to draw enough users to 
Auracle so that there are always ensembles of players 
online. In this regard, we are focusing not only on 
drawing more users to the site, but also on getting more 
of them to log in and participate once they arrive. Many 
users visit the site but never successfully launch Auracle 
and make a sound. While we are working to improve 
site documentation to help them more easily test and 
configure their audio system, our informal polling 
indicates that the majority of these users simply lack 
computer microphones. With the growing popularity of 
online audio chat and telephony applications, we hope 
that computer microphones will become more 
ubiquitous in the coming years. 

We are also working to make Auracle more 
accessible to members of the computer music 
community. We are preparing much of the Java source 
code for release under an open-source license, so that 
others may leverage our development work in their own 
projects, and we are also creating a Software 
Developer’s Kit which would enable Java and JSyn [2] 
developers to contribute mapping and synthesis 
components to the project. By opening Auracle 
development to new contributors, we hope that the 
project will evolve in new ways and new directions 
which we could not have envisioned ourselves. 

4. ACKNOWLEDGEMENTS 
The Auracle project is a production of Max Neuhaus 
and Akademie Schloss Solitude (art, science, and 
business program) with the financial support from the 
Landesstiftung Baden-Würtemburg. We express our 

gratitude for their generous support. Auracle is available 
at http://auracle.org. 

5. REFERENCES 

[1] Banse, R., and K. Scherer. 1996. Acoustic 
Profiles in Vocal Emotion Expression. Journal 
of Personality and Social Psychology, 70 (3): 
614-636. 

[2] Burk, P. 1998. JSyn – A Real-time Synthesis 
API for Java. Proceedings of the 1998 
International Computer Music Conference. 
Ann Arbor, MI: ICMA, 252-255. 

[3] Burk, P. 2000. Jammin' on the web – a new 
client/server architecture for multi-user 
performance. Proceedings of the 2000 
International Music Conference. Berlin, 
Germany: ICMA, 117-120. 

[4] Cowie, R., E. Douglas-Cowie, N. Tsapatsoulis, 
G. Votsis, S. Kollias, W. Fellenz, and J. Taylor. 
2001. Emotion Recognition in Human-
Computer Interaction. IEEE Signal Processing 
Magazine, January 2001, 32-80. 

[5] Diamantaras, K. and S. Y. Kung. 1996. 
Principal Component Neural Networks. New 
York: John Wiley and Sons, Inc. 

[6] Freeman, J., C. Ramakrishnan, K. Varnik, M. 
Neuhaus, P. Burk, and D. Birchfield. 2004. 
Adaptive High-level Classification of Vocal 
Gestures Within a Networked Sound 
Environment. Proceedings of the 2004 
International Computer Music Conference. 
Miami, FL, ICMA: 668-671. 

[7] Kung, S., K. Diamantaras, and J. Taur. 1994. 
Adaptive Principal Component EXtraction 
(APEX) and Applications. IEEE Transactions 
on Signal Processing, 42 (5), 1202-1217. 

[8] Neuhaus, M. 1994. The Broadcast Works and 
Audium. In Zeitgleich. Vienna: Triton, 1994. 
http://auracle.org/docs/Neuhaus_Networks.pdf 

[9] Rabiner, L. and R. Schafer. 1978. Digital 
Processing of Speech Signals. Englewood 
Cliffs, NJ, Prentice-Hall. 

[10] Ramakrishnan, C., J. Freeman, K. Varnik, D. 
Birchfield, P. Burk, and M. Neuhaus. 2004. 
The Architecture of Auracle: A Real-Time, 
Distributed, Collaborative Instrument. 
Proceedings of the 2004 Conference on New 
Interfaces for Musical Expression. Hamamatsu, 
ACM: 100-103. 

[11] Yacoub, S., S. Simske, X. Lin, and J. Burns. 
2003. Recognition of Emotions in Interactive 
Voice Response Systems. 
http://www.hpl.hp.com/techreports/2003/HPL-
2003-136.html. 


