Auracle: a voice-controlled, networked sound

instrument*

JASON FREEMAN, KRISTJAN VARNIK, C. RAMAKRISHNAN, MAX NEUHAUS,

PHIL BURK and DAVID BIRCHFIELD

College of Architecture, Music Department, Georgia Institute of Technology, 840 McMillan Street, Atlanta, GA 30332-0456, USA

E-mail: jason@jasonfreeman.net
Akademie Schloss Solitude, Solitude 3, D-70197 Stuttgart, Germany
E-mail: kristjan.varnik@akademie-solitude.de

Institut fuer Musik und Akustik, ZKM, LorenzstraBe 19, D-76135 Karlsruhe, Germany

E-mail: cramakrishnan@acm.org

350 Fifth Avenue, Suite 3304, New York, NY 10118, USA
E-mail: neuhaus@max-neuhaus.info

Softsynth, 75 Pleasant Lane, San Rafael, CA 94901, USA
URL: http://www.softsynth.com/contacts.html

Arts, Media, and Engineering, Arizona State University, Tempe, AZ 85281, USA

E-Mail: dbirchfield@asu.edu

Auracle is a voice-controlled, networked sound instrument
that enables users to control a software synthesizer with their
voice and to interact with each other in real time over the
Internet. This paper discusses the historical background of
the project, beginning with Neuhaus’ ‘virtual aural spaces’ in
the 1960s and relating them to Barbosa’s conception of
‘shared sonic environments’. The architecture of the system is
described in detail, including the multi-level analysis of vocal
input, the communication of that analysis data across the
network, and the mapping of that data onto a software
synthesizer.

Not only is Auracle itself a collaborative, networked
instrument, but it was developed through a collaborative,
networked process. The project’s development mechanisms
are examined, including the use of existing tools for
distributed development, the creation of custom development
applications, the adoption of extreme programming
practices, and the use of Auracle itself as a means for
communication and collaboration among developers.

1. INTRODUCTION

Auracle is a voice-controlled, networked sound
instrument conceived by Max Neuhaus and realised
collaboratively by the authors. Users interact with
each other in real time over the Internet, playing
synthesised instruments together in a group ‘jam’.
Each instrument is entirely controlled by a user’s
voice, taking advantage of the sophisticated vocal
control that people naturally develop learning to
speak. The project was designed to facilitate the
kinds of communal sound dialogue that are rare in
contemporary society:

Anthropologists in looking at societies which have not
yet had contact with modern man have often found

*The Auracle project is a production of Max Neuhaus and
Akademie Schloss Solitude (art, science and business program)
with the financial support from the Landesstiftung Baden-
Wiirtemburg. We express our gratitude for their generous support.
Auracle is available at http://auracle.org

Organised Sound 10(3): 221-231 © 2005 Cambridge University Press. Printed in the United Kingdom.

whole communities making music together. Not one
small group making music for the others to listen to, but
music as a sound dialogue between all the members of the
community . .. these works are really ... proposing to
reinstate a kind of music which we have forgotten about
and which is perhaps the original of the impulse for music
in man. Not making a musical product to be listened to,
but forming a dialogue, a dialogue without language, a
sound dialogue.

These pieces then are about taking ordinary people and
somehow putting them in a situation where they can start
this nonverbal dialogue. They have the innate skills as
our ability with language demonstrates. The real problem
then is finding a way to let them escape from their pre-
conceptions of what music is. We now think of music as
an aesthetic product. When you propose to a lay public
that they make music together, they all try to imitate
professional musicians making a musical product, badly.
It only gets interesting when they lose their self-
consciousness and become themselves. (Neuhaus 1994)

Auracle is an entity made to create such an opportu-
nity. It was designed to be accessible to a lay public
without musical training or technical expertise. We
strived to create an open-ended architecture rather
than a musical composition: a system that, as much as
possible, responds to but does not direct the activities
of its users. We also sought to build a highly transpar-
ent system, in which users could easily identify their
own contributions within the ensemble, while also
remaining engaged over extended periods of time.

2. HISTORICAL BACKGROUND

Auracle is inspired by a class of analogue sound works
that construct virtual aural spaces using networks
comprised of telephone connections and radio broad-
casts. In Public Supply (1966, 1973) and Radio Net
(1977), Max Neuhaus mixed together audio from

doi:10.1017/S1355771805000968

222 Jason Freeman et al.

callers during live radio broadcasts and used callers’
audio to control sound synthesis (Neuhaus 1990,
1994). More recently, radio shows by NegativLand
(Joyce 2005) and Press the Button (Radio Show Call-
ing Tips 2005), among others, have invited telephone
callers to join improvising musicians in the broadcast
studio.

These analogue networks are precursors to a
number of digital works which use the Internet to
create virtual aural spaces. Barbosa labels such works
‘shared sonic environments’ and defines them as ‘a
new class of emerging applications that explore the
Internet’s distributed and shared nature [and] are
addressed to broad audiences’ (Barbosa 2003: 58).
As examples, he cites WebDrum (Burk 1999), where
online participants collaboratively alter settings on a
drum machine; MP3Q (Tanaka 2000), where users
collectively manipulate MP3 files with a 3D interface;
and Public Sound Objects (Barbosa and Kalten-
brunner 2002), an open-ended architecture for the
creation of shared sonic environments.

We consider Auracle to be a shared sonic environ-
ment, and our work was influenced by Barbosa’s
examples as well as other recent projects. In Daisy-
Phone (Bryan-Kinns and Healey 2004), for example,
Internet or mobile-phone users collaboratively modify
a looping musical MIDI sequence, with each user
colouring circles to change the pitches and rhythms in
his or her instrument. In Eternal Music (Brown 2003),
each user drags a ball around a window to control a
drone generated by modulated sine waves. Compo-
nents of the Cathedral Project (Duckworth 2000), the
Brain Opera (Machover 1996) and HubRenga (Brown
and Bischoff 2003) have invited Internet users to
control sounds during live physical performances,
collaborating not only with other Internet users but
also with live performers onstage. And Silophone (The
User 2000) operates in both the analogue and digital
domains; it joins together sounds made by telephone
callers and sound files uploaded by Internet partici-
pants, playing them in a giant grain silo in Montreal
and broadcasting their acoustic transformations back
over the phone and Internet to participants.

Unlike Silophone, Auracle uses analysis data from
the voice to control a synthesis engine; it does not
directly process and output an audio stream. This
approach was initially motivated by practical consid-
erations: it reduced network bandwidth and latency
while maintaining high-quality audio output. It is
also a much more flexible way for us to map input to
output.

Similar ideas about vocal analysis and synthesis can
be traced back to the vocoder (Dudley 1939), which
analyses voice input with a bank of bandpass filters
and resynthesises an approximation of the original
signal (Roads 1996: 197-8). And a number of recent
software projects and interactive musical works use

related techniques. For example, the Kantos software
plug-in (Antares 2004) maps pitch, rhythmic and
formant analyses of a monophonic audio input onto
its synthesizer; the mapping parameters and synthesis
algorithm are configured through a graphical inter-
face. In The Singing Tree (Oliver 1997), a component
of the interactive ‘Mind Forest’ in Tod Machover’s
Brain Opera (Machover 1996), users are asked to
sing a steady pitch into a microphone; as they hold it
steadier and longer, a MIDI harmonisation becomes
richer, and images on a screen begin to change. And
the Universal Whistling Machine (Bohlen and Rinker
2004) analyses the pitch and amplitude envelopes
of a user’s whistling, and it synthesises responses in
which the tempo, contour and direction of the analysis
data are transformed. Analogue synthesis based on
vocal analysis was also an important component in
Neuhaus’ Public Supply III (1973) and in Radio Net
(Neuhaus 1990 and 1994).

3. ARCHITECTURE

As the video example on the accompanying DVD
demonstrates, users launch Auracle from the project’s
website, opening a graphical user interface through
which they can jam’ with other users logged in from
around the world. To control their instrument, users
input vocal gestures into a microphone. Their gestures
are analysed, reduced into control data, and sent to
a central server. The server broadcasts that data back
to all participating users within their ensemble. Each
client computer receives the data and uses it to control
a software synthesizer.

The client software is implemented as a Java applet
incorporating the JSyn plug-in (Burk 1998), and
real-time collaboration is handled by a server running
TransJam (Burk 2000). Data logging for debugging,
usage analysis, and long-term system adaptation is

High-level analysis:
high-level feature extraction

Mapping
map envelopes and

Mid- leve! analysis:
group frames into gestures;
calculate statistical features

high-level features
onto synthesis
control parameters

Low- Ievel analysis:
fo, f1, f2, amplalude etc.

(Synthesis)

)
y

Microphone Input

A
Headphone or
Speaker Output

Figure 1. Auracle system architecture.

handled by an HTTP post (from Java) on the client
side and PHP/MySQL scripts on the server side.

The following subsections describe each architec-
tural component in detail.

3.1. Low-level analysis

The initial low-level analysis of the voice computes
basic features of the audio signal over an analysis
window, supplying data for the system to use in higher
levels of analysis and in sound synthesis (Rama-
krishnan, Freeman, Varnik, Birchfield, Burk and
Neuhaus 2004). The analysis assumes that all incom-
ing sound is vocal, because Auracle asks its users to
make vocal sounds.

The incoming sound is analysed for fundamental
frequency and root mean square (RMS) amplitude.
We also detect features traditionally important to
both speech and timbre analysis applications: the first
two formant frequencies and their respective band-
widths, and the degree to which the sound is voiced
or unvoiced. Voiced inputs are pitched sounds such as
vowels, in which the vocal cords buzz; unvoiced inputs
are breathier, noisier sounds such as fricatives and
sibilants (Roads 1996: 204).

JSyn is used to capture the input from a micro-
phone, but it cannot extract the vocal parameters
we need, so we built this functionality ourselves. We
limited our own DSP implementation to pure Java to
avoid packaging and deploying native libraries for
each targeted platform. We considered techniques
based on linear prediction (LP), cepstrum (used in
Oliver 1997), FFT, and zero-crossing counts. We
chose linear prediction, feeling it would be the
easiest to implement in pure Java with acceptable
performance and accuracy.

Raw sample data from the microphone is brought
from JSyn into Java. Once in Java, the data is
determined to be voiced or unvoiced based on the
zero-crossing count. Following Rabiner and Schafer
(1978), the data is down-sampled to 8,192 Hz and
broken into 40 ms blocks, which are analysed by
LP for fundamental frequency, the first and second
formant frequencies, and the formant bandwidths.
The values for each block of analysis are fed into a
median smoothing filter (Rabiner and Schafer 1978:
158-61) to produce the low-level feature values for
that analysis frame.

Performance of the LP code was a major concern of
ours. So, in this case, we violated Knuth’s maxim and
prematurely optimised. The LP code is implemented in
a slightly peculiar, non-object-oriented style. The goal
was to minimise virtual and interface method lookup,
and more importantly, to minimise object creation.
Though such issues are often disregarded when writing
Java, removing memory allocations in time-critical
loops proved crucial to tuning this code.

Auracle 223

3.2. Mid-level analysis

The low-level analysis provides enough data to control
aspects of the frequency, amplitude and timbre of a
synthesizer with some degree of creativity, subtlety
and musicality. But in practice, we found that a consis-
tent one-to-one mapping of this low-level data did
not allow participants to create a broad enough range
of sounds. Without a higher level of transformation,
the system failed to sustain their interest for extended
periods of time. In response, we developed additional
levels of analysis to classify vocal input. The system
uses those classifications to further control the timbre
of its synthesised responses.

The mid-level analysis groups low-level frames into
gestures, so that further analysis can consider changes
to low-level data over the course of these gestures.
Since users are asked to hold down a play button while
they are making a sound, it is trivial to create gestures
based on the button’s press and release. (Our original
motivation for the button had been to reduce acousti-
cal feedback in the system.)

Once Auracle identifies a gesture, it calculates a
feature vector of statistical parameters which describe
the low-level data. These statistics are based largely on
studies of vocal signal analysis for emotion classifica-
tion by Banse and Scherer (1996), Yacoub, Simske,
Lin, and Burns (2003), and Cowie, Douglas-Cowie,
Tsapatsoulis, Votsis, Kollias, Fellenz and Taylor
(2001). While we are not focused solely on emotion,
we found this research a useful starting point. Studies
of timbre, most of which extend Grey’s (1977) multi-
dimensional scaling studies, were also informative,
but their focus on steady instrumental tones was less
directly applicable to the variety of vocal gestures
expected from Auracle users. And while many emo-
tion classification studies try to separate linguistically
determined features from emotionally determined
features (Cowie et al. 2001), we wanted Auracle to
consider features of user input whether they were
linguistically determined, emotionally determined, or
consciously manipulated by users.

The mid-level feature vector includes forty-three
features: the mean, minimum, maximum, and stan-
dard deviation of f0, f1, f2, and RMS amplitude,
as well as of their derivatives; the mean, minimum,
maximum, and standard deviation of the durations of
individual silent and non-silent segments within the
gesture; and the ratio of silent to non-silent frames,
voiced to unvoiced frames, and mean silent to mean
non-silent segment duration.

3.3. High-level analysis

The mid-level feature vector provides important
analytical data about vocal input, but in a sense it
provides too much data to be directly useful. How

224 Jason Freeman et al.

could we reasonably map forty-three different
statistical features onto synthesis control parameters?

Our solution is to perform a high-level analysis
which projects the forty-three-dimensional mid-level
feature vectors onto a three-dimensional space (Free-
man, Ramakrishnan, Varnik, Neuhaus, Burk and
Birchfield 2004). In defining those dimensions, we
did not wish to merely select a subset of the mid-level
features, nor did we wish to manually create projection
functions; these approaches would have driven users
to interact according to our own preconceptions,
and in doing so would have contradicted the goals of
the project. We were instead attracted to Principal
Components Analysis (PCA), because it preserves the
greatest possible amount of variance in the original
data set. In other words, the mid-level features which
users themselves vary the most take on the greatest
importance in the PCA projection. It facilitates a
self-organising, user-driven approach.

But PCA creates a static projection; for Auracle,
we wanted a dynamic technique which could perform
both short-term adaptation — by changing over the
course of a session to focus on the mid-level features
varied most by a single user — and long-term adapta-
tion, in which the classifier’s initial state for each
session slowly changes to concentrate on the mid-level
features varied most by the entire Auracle user base.
With an adaptive PCA system, users are able to create
an increasing variety of synthesised sounds as the
system becomes more accustomed to the types of
vocal gestures they are making. Even though each user
explores only a small portion of the input space, his
or her gestures are eventually projected onto an
extremely large portion of the output space.

An adaptive classifier does sacrifice a degree of
transparency in its classifications: it is more difficult
for users to relate their vocal gestures to sound output
when the high-level feature classifications, and thus
the mappings, are constantly changing. And it is
impossible to interpret the meaning of high-level
features during the design of mapping procedures,
since their semantics change with adaptation. For us,
though, transparency in this component of Auracle
was less important than adaptability.

Our adaptive PCA implementation does not use
classical PCA methods, which define the principal
components of a set of feature vectors to be the eigen-
vectors of the covariance matrix of the set with the
greatest eigenvalues. This strategy is awkward to
adapt to a continuously expanding input set and
computationally expensive to perform in real time in
Java. Instead, we implement the Adaptive Principal
Component EXtraction (APEX) model (Kung,
Diamantaras and Taur 1994; Diamantaras and Kung
1996), which improves upon earlier neural networks
proposed by Oja (1982), Sanger (1989), Rubner and

Figure 2. The APEX neural network as used within Auracle.

X nodes represent mid-level features (input) and Y nodes

represent high-level features (output). W weights are
feed-forward, C weights are lateral.

Tavan (1989) and others. APEX efficiently imple-
ments an adaptive version of PCA as a feed-forward
Hebbian network (with modifications to maintain
stability) and a lateral, asymmetrical anti-Hebbian
network. The Hebbian portion of the network discov-
ers the principal components, while the anti-Hebbian
portion rotates those components. The learning rate of
the algorithm is automatically varied in proportion to
the magnitude of the outputs and a ‘forgetting’ factor
which controls the algorithm’s memory of past inputs
(Kung, Diamantaras and Taur 1994).

Upon launching Auracle, a client’s neural network
is initialised with weights from the server. (The initial
server-side weights were created by training the neural
network on a database of 230 recorded vocal ges-
tures.) Over the course of a user session, the client-side
neural network adapts to the vocal gestures created
by the local user, updating its internal weights acc-
ordingly. Then, when a user logs out of Auracle, the
client’s internal weights are transmitted back to the
server, which merges them with its previous weight
matrix to facilitate long-term adaptation.

Unlike many other neural networks, it is easy to
monitor how APEX adapts; each feed-forward weight
represents the importance of a particular mid-level
feature in the computation of a particular high-level
feature. This transparency was critical in developing,
debugging and evaluating the high-level analysis
system within Auracle.

3.4. Network

The analytical techniques discussed in the previous
sections do more than just analyse audio input; they
are also an extreme form of data compression. Each
Auracle client sends only a small amount of analysis
data over the Internet instead of complete audio
streams, dramatically reducing bandwidth require-
ments, network latency, and server load.

Each gesture’s low-level analysis envelopes, along
with the high-level feature values, are sent to a central
server running TransJam (Burk 2000), a Java server
for distributed music applications. TransJam provides
a mechanism to create shared objects, acquire locks on
those objects, and distribute notifications of changes
to those objects. Each client stores its gesture data in a
shared object, and when it updates that object, the
server transmits the information to all clients in the
ensemble. In this manner, all client machines maintain
all players’ analysis data in sync.

Java security restrictions and practical networking
issues made direct peer-to-peer communication
impossible, necessitating a central server. To mitigate
the probability of a performance bottleneck, Auracle’s
architecture is designed to minimise the work done by
the server. The server is merely a conduit for data
and does no processing itself. Mapping and synthesis
operations are duplicated by all clients, but we pre-
ferred this solution over increasing server load. Our
benchmarking shows that we can support 100 simulta-
neous users, each sending one gesture per second, with
an average CPU load of only 35 per cent on our Apple
Xserve (1.33 GHz G4, 512 MB RAM).

3.4.1. Network timing and latency

Auracle is designed to facilitate a conversational style
of interaction, in which players respond to earlier
sounds they hear instead of planning simultaneous
gestures with other participants. In online text chats
and in most offline conversations, people listen to or
read the comments of others before expressing their
own thoughts; rarely do two people speak at the same
time. Auracle encourages a similar approach, and
in so doing, also circumvents many of the timing,
synchronisation and latency problems common to
networked music.

The analysis data is transmitted to the server
only once a complete gesture has been detected. This
reduces network traffic and generally uses the network
more efficiently. Data is only mapped onto synthesis
control parameters when it arrives from the server,
even when the data was created by the local client.
This creates a short delay between the vocal input and
synthesised response which facilitates the conversa-
tional style of interaction.

In addition to the delays imposed by gesture detec-
tion and the latency of network transmission, the
onset of a gesture is sometimes further postponed in

Auracle 225

order to minimise its overlap with other gestures. We
delay gesture onsets by as much as one second, and
when necessary we also time-scale gestures to as short
as half their original length. When gestures are succes-
sive rather than simultaneous, the interaction becomes
more conversational, and it also becomes easier to
hear individual gestures within that conversation,
increasing the system’s transparency.

3.5. Mapping and synthesis

Once analysis data is received from the server, it must
be transformed back into audio. A mapping com-
ponent generates envelopes from the data and uses
them to control parameters for a software synthesizer.
Intuition, pragmatism and musicality played a tremen-
dous role in designing these components. We created
and evaluated hundreds of different implementations
before deciding on the final version, which for us struck
the best balance between creating a large variety of
sounds and maintaining a transparent relationship
between vocal input and synthesised response.

The synthesis algorithm, implemented entirely using
the JSyn API (Burk 1998), is a hybrid of several tech-
niques. The synthesizer is composed of three separate
sections: an excitation source, a resonator, and a filter
bank. The initial excitation is composed of two sources
— a pulse oscillator and a frequency-modulated sine
oscillator. These are mixed and sent through an
extended comb filter, with an averaging lowpass filter
and probabilistic signal inverter included in the
feedback loop. The result is sent through a bank of
bandpass filters and mixed with the unfiltered sound
to generate the final output.

The mapper manages an entire ensemble of synthe-
sis instruments, each of which is controlled by the
vocal gestures of a single player. Much of the low-
level analysis data is mapped onto the synthesizer
in straightforward ways. The fundamental frequency
envelope controls the frequency of the excitation
sources and the length of the feedback delay line.
The amplitude envelope controls multiple synthesis
parameters — the amplitude of the excitation source,
the overall amplitude of the synthesizer, and the depth
of frequency modulation — in order to make the ampli-
tude envelope more salient in the synthesised sound.
The first and second formant envelopes are used to
set the centre frequencies of the bandpass filters, and
the Q on those filters are inversely proportional to
the formant bandwidth envelopes. The voicedness/
unvoicedness envelope modulates the probabilistic
signal inverter between noisier and purer timbres.

High-level feature data, on the other hand, is used
to control timbral aspects of the synthesizer which
remain constant for the duration of each gesture: the
ratio of pulse to sine generators in the excitation
source, the probability of inverting the feedback
signal, and the filter Q values. In the latter two cases, a

226 Jason Freeman et al.

EXCITATION RESONANCE FILTERING

Sine Oscillator Frequency Delay Unit
Modulator ‘-——-_______s
Bandpass
Filter ’\
Mixer
Pulse Probabilistic
Oscillator Signal Inverter Mixer

~_J

Lowpass Filter

Bandpass

Averaging Filter

Figure 3. Synthesizer schematic.

high-level feature value defines a range within which
the parameter can vary over the course of the gesture;
then low-level envelopes control continuous, subtle
variations within that range.

We did not want sound output to stop completely
when users were not making vocal gestures. So once a
player’s synthesizer is finished with a gesture, it sounds
a quiet ‘after-ring’ until the user’s next gesture begins.
The relationship of the vocal gesture to this after-ring
is less transparent than with the gesture itself; it is a
quiet sound, constantly but subtly changing, based on
the slowed-down formant envelopes of the previous
gesture played out of phase with each other.

To help users more easily distinguish among the
sounds controlled by different players, we make small
modifications to timbre and panning for each synthe-
sis instrument. A player’s own synthesizer is always
panned to the centre of the stereo mix; other players
are panned to the left or right to varying degrees. And
the frequency modulation ratio for each player’s syn-
thesizer is randomly initialised to a different position
in a lookup table, which defines an ordered set of
ratios moving from whole numbers to increasingly
complex fractions. Over the course of a session, the
frequency modulation ratio does change, but its initial
value is always unique.

3.6. Graphical user interface

The focus of Auracle is on aural interaction, so
the software’s graphical user interface is deliberately
utilitarian and sparse. The main display area shows
information about all users in the active ensemble of
players: their usernames, their approximate locations
on a world map (computed with an IP-to-location
service), and a running view of the gestures they make
(displayed as a series of coloured squiggles corre-
sponding to amplitude, fundamental frequency, and
formants). Users push and hold a large play button
when they make a vocal gesture. Additional controls

allow them to move among ensembles, create new
ensembles, and monitor and adjust audio levels. A text
chat among players within the ensemble is available in
a separate pop-up window.

4. DISTRIBUTED DEVELOPMENT PROCESSES

Not only is Auracle itself a collaborative, networked
instrument, but it was developed through a collabora-
tive, networked process. The six-member project team
had members based in Germany, Italy, California and
Arizona. By creating a flexible, component-based
system architecture and by using off-the-shelf tools
and custom solutions to collaboratively develop and
evaluate those components, we were able to effectively
work together throughout the year-long development
process to make the project a reality.

4.1. Component-based architecture

We designed Auracle as a component-based architec-
ture because we wanted to experiment with a variety
of approaches, particularly with regards to mapping
and synthesis techniques. We also needed to easily
integrate source code developed by different team
members.

In designing the initial system architecture, we
defined component types (low-level analysis, mid-level
analysis, high-level analysis, network communication,
mapping and synthesis) and the data objects which
flow between them, without yet deciding how each
component would be implemented. The components
use Java interfaces, reflection, and the observer pat-
tern, combined with an avoidance of direct cross refer-
ences, to enable specific component implementations
to be mixed and matched to form a complete system.
During start-up, Auracle reads a text file specifying
the particular components to be used and instantiates
the corresponding configuration.

8006

Ensembles
Click One To Go There

veve

v

Create Ensemble

Show Chat

|

I 20000
——————
! = J

Auracle 227

auracle

phil

Click and Hold
Make Sound and Release

Figure 4. Auracle graphical user interface.

4.2. Auracle TestBed

While this component-based architecture helped us
easily integrate new code into the system and try
different implementations, it was tedious to constantly
edit large configuration files and relaunch the pro-
gram. As the number of experimental components
grew, tracking and comparing configurations became
increasingly difficult, and manually distributing
configurations to colleagues became tedious.

To address these limitations, we created the Auracle
TestBed, a separate application used only in the devel-
opment process and not included in the public release
(Varnik, Freeman, Ramakrishnan, Burk, Birchfield
and Neuhaus 2004). Pop-up menus in the TestBed’s
GUI select analysis, mapping, synthesis, and effects

unit components, and sliders adjust internal synthe-
sizer parameters for fine-tuning control.

The TestBed saves patches, which describe compo-
nent configurations and include developer annota-
tions. The patches are saved as text files and also
displayed as buttons in the graphical user interface.
A single button press switches to a different system
configuration, enabling rapid comparisons between
patches. The change in Auracle’s configuration is
immediate; no text files need to be edited and the
application does not need to be restarted.

From within the TestBed, developers can also
upload their patches to the group development server
to share them with other team members, who can use
them in a group ‘jam session’ or download them to
their local machine.

228 Jason Freeman et al.

Auracle TestBed
File Patch Test Input
-Patch -Mapper -Synthesizer- ~Output
r\l_a_rr'_le SynthNotaEnvelopehapper = | RngModilel = ! XVerb T‘
mm04patch
— modindex | FX Bypass

Description

Example Patch. | Mute

HalfLife VeI
Delete Patch
mmo04patch

Figure 5. Auracle TestBed graphical user interface.

4.3. Rapid mapper and synthesizer prototyping

Of all the component types in Auracle’s architecture,
mappers and synthesizers were the subject of the most
experimentation and debate; we had to implement
and compare a large variety of approaches before
even deciding on a general design strategy. In order to
prototype these alternatives as quickly as possible, we
integrated Auracle with external sound development
tools.

The Auracle TestBed can send analysis data to
any application which supports the Open Sound
Control (OSC) protocol (Wright and Freed 1997). We
used this feature to send real-time Auracle data to
SuperCollider (McCartney 1996), Max/MSP (Cycling
74 2004), and Wire (Burk 2004). Each developer
was able to work within a familiar, user-friendly envi-
ronment which permitted runtime modifications to
synthesis algorithms.

We exported patches developed in Wire as Java
source code and directly integrated them into
Auracle’s Java source tree. For algorithms designed
in the other applications, we manually ported the
most successful components to Java, which was
straightforward.

4.4. Group component comparison and evaluation

Auracle is designed for use by an ensemble of partici-
pants, so it was important to evaluate component
implementations in group situations. Mapping and
synthesis components sounded dramatically different
when used individually than when used in a group ‘jam
session’.

So Auracle itself became a primary platform for our
own collaboration on the project. Within just a few
weeks of beginning development, we completed bare-
bones implementations of each component type,
along with text-based chat functionality, and began

holding twice-weekly ‘jam sessions’ on our develop-
ment builds. These jams, which were usually followed
by Internet-based audio conference calls, were critical
opportunities to evaluate our progress and discuss
important issues. They also helped us to regularly
experience Auracle as users rather than as developers.

Sometimes, an individual developer needed still
more time to evaluate component implementations in
group situations, so we developed a Headless Client to
simulate user activity. In order to reduce CPU usage,
the Headless Client pre-analyses audio files and stores
data in a form ready to transmit to the server. It
references this pre-processed data when ‘jamming’ on
Auracle. And it does not perform any mapping or
synthesis on data received back from the server.

A command-line application launches several
Headless Clients simultaneously to simulate one or
more ensembles of participants. A developer can
simulate dozens of users from a single machine and
then launch a single instance of the complete applet to
‘jam’ with them interactively.

5. EXTREME PROGRAMMING PRACTICES

Networked software development necessitated not
only good collaboration tools, but also good devel-
opment habits to keep code clear, integrated and
synchronised. We followed many of the practices
encouraged by the Extreme Programming (XP) para-
digm (Beck 1999), including nightly automated builds
and unit testing on our development server, and
frequent developer collaboration and task rollover.
We also used Javadoc functionality to create self-
documenting source code and complemented this
documentation with higher-level design overviews on
our group Wiki.

Ultimately, we found that the biggest challenges in
developing a robust networked music application were

to reproduce and debug problems which arose from
specific vocal gestures or group activities, and to iden-
tify problems which remote users encountered but
were unlikely to report to us.

5.1. Automating user input

In order to consistently reproduce problems and to
create effective unit tests, we had to simulate user
vocal input from pre-recorded audio files. Our Test-
Bed application enabled us to manually select and
loop through audio files which replace microphone
input into Auracle, and we maintained a large vocal
gesture database to use in this regard. A second,
smaller collection of sound files documented gestures
which caused problems such as inaccurate analyses,
overloaded synthesis filters, or even crashes. We used
these files to consistently reproduce problems as we
were trying to fix them. Unit tests relied on the same
code base as the TestBed to simulate user input.

With our Headless Client (see section 4.4 above), we
were able to simulate many simultaneous users with a
single computer. This helped us track bugs which only
occurred in group situations and to benchmark the
server under heavy usage loads.

5.2. Tracking mechanisms

In a live concert of interactive computer music, the
fear is that the software will suddenly fail, the machine
will crash in the middle of the performance, and there
will be no time to fix it. With an ongoing Internet work
such as Auracle, there is always an opportunity to fix
problems; the fear is that issues will never be reported
by users, and developers will never know they exist.
To avoid this situation, we automatically log detailed
information about problems as they occur, so that we
are not dependent on users to report issues themselves.

Web server logs provide basic information about
site visitors, and the TransJam server tracks some
rudimentary information about user sessions. But
these tools do not provide an adequate level of detail.
So the Auracle applet complements this data by
uploading additional information to a server-side
database, tracking each client’s operating system, web
browser, Java implementation, and all client-side
error messages and Java stack traces. The database
is searchable via a Web interface, and daily e-mail
summaries are sent to our mailing list.

This logging data helps us more easily track and
fix bugs. When users do send us problem reports, we
can quickly locate their session in the database to find
information about their system configuration and
error messages. And we can look directly in the data-
base to find errors which were never reported. Often, a
stack trace points us to a specific line of source code
and an easy solution.

Auracle 229

6. DISCUSSION

Auracle was officially launched to the public in
October 2004 — on the Internet, at Donnaueschinger
Musiktage in Germany, and during a live radio event
on SWR. We have been thrilled to see how Auracle
engages people ranging from non-musicians to trained
singers, of many different ages and cultural back-
grounds. Inevitably, some players are shy, have diffi-
culty thinking of vocal gestures, and quit after a few
minutes. But we have observed many players interact-
ing with Auracle for over thirty minutes, enjoying the
identification of their voices in the sounds Auracle
produces and the surprise in hearing those transforma-
tions and the responses of others. Over time, Auracle
encourages them to create an increasing variety of
vocal sounds — whether whistling, gurgling, shouting
or singing — as they strive to explore the boundaries of
the system.

In our own regular ‘developer jams’ on the system,
we developed strategies for collaboratively structuring
our interaction over extended periods of time. Often,
one of us would suddenly start making gestures
which radically departed from the current sounds in
frequency, density, noise content, or dynamics, and
the rest of the players would gradually begin to imitate
them. And sometimes, we would use Auracle’s text
chat functionality to plan such changes more carefully.

6.1. User base

We are encouraged by the fact that Auracle users are
engaged with the system for extended periods of time,
and that many of them return to participate again.
During the eight months beginning 15 October 2004
there were 1,494 user sessions on Auracle, with 803
usernames connecting from 717 distinct hosts. The
average session length was 14.8 minutes.

The majority of users play Auracle alone. Auracle
is engaging when played in this manner, but it is most
interesting when users are online at the same time and
can ‘jam’ together. We have created perpetual, virtual
ensembles on Auracle where users can play with
robots if they wish, but this is not a substitute for
interaction with other human beings. We have also
experimented with a variety of strategies to help users
find each other online, including scheduling regular
online events and encouraging users to plan Auracle
meetings with friends, but these techniques have had
limited success. Our most successful Auracle events,
ironically, have taken place in the physical world, with
several computers set up as kiosks on which people
can try it. We are continuing to present Auracle in this
format, and we are also exploring the possibility of
permanent kiosks in museums and other public spaces.

In the long term, we hope to draw enough users to
Auracle so that multiple players are always online. In

230 Jason Freeman et al.

this regard, we are focusing not only on drawing more
users to the site, but also on getting more of them to
log in and participate once they arrive. We designed
Auracle with easy set-up in mind, and we tested exten-
sively for compatibility on a wide variety of platforms
and configurations. But during the eight-month
period beginning 15 October 2004, 7,877 distinct hosts
visited the Auracle website, yet only 717 of those hosts
— just under ten per cent — actually launched and
logged in to Auracle. And over half of the users who
did log in never actually input a sound. All told, only
about five per cent of people who visited the web site
actually used Auracle!

Some users are likely perplexed by the user inter-
face, and we are working to improve site documenta-
tion and help them more easily test and configure their
audio system. Others are too shy to contribute, prefer-
ring to lurk. But our informal polling indicates that the
majority of users simply lack computer microphones.
While we do not expect users to buy an external micro-
phone or headset just to use Auracle, we are encour-
aged by the growing popularity of online audio chat
and telephony applications, and we hope that com-
puter microphones will soon be ubiquitous even on
desktop machines.

Many users are also reluctant to install the JSyn
plugin, which requires them to click through a few
Web pages and dialogue boxes, restart their web
browser, and navigate back to the Auracle site.
Though the process only takes a minute, it is still more
of a nuisance than most casual Web surfers are willing
to endure. Unfortunately, JSyn’s reliance on native
code makes automatic installation impossible, and
there is currently no viable alternative which runs
inside a Web browser. As computer processors con-
tinue to get faster, it will eventually become possible to
implement projects like Auracle in pure Java, making
such installation procedures unnecessary. Until then,
we must make the best of the situation as it stands.

6.2. Opening Auracle to the computer music
community

Auracle was designed for a lay public without formal
musical or technical training, and those users have
been the focus of our efforts to date. Now, we want to
make the project more accessible to members of the
computer music community. We are preparing much
of the Java source code for release under an open-
source licence, so that others may incorporate our
development work in their own projects.

We are also interested in allowing third-party devel-
opers to contribute custom mapper and synthesizer
components which would function as plug-ins to
Auracle. We are creating a Software Developer’s Kit
to enable experienced Java and JSyn developers to
participate. It will include a streamlined Java API for

Auracle plug-ins, through which player analysis
data can be obtained from the system and an audio
stream can be returned. A stand-alone Auracle test
environment will also be available.

By opening Auracle development to new contribu-
tors, we hope that the project will evolve in new
ways and new directions which we could not have
envisioned ourselves.

REFERENCES

Antares Audio Technologies. 2004. Antares kantos. http:/
www.antarestech.com/products/kantos.html

Banse, R., and Scherer, K. 1996. Acoustic profiles in vocal
emotion expression. Journal of Personality and Social
Psychology 70(3): 614-36.

Barbosa, A. 2003. Displaced Soundscapes: a survey of
networked systems for music and sonic art creation.
Leonardo Music Journal 13: 53-9.

Barbosa, A., and Kaltenbrunner, M. 2002. Public Sound
Objects: a shared musical space on the Web. Proc. of the
Int. Conf. on Web Delivering of Music 2002, pp. 9-15.
Darmstadt, Germany: IEEE Computer Society Press.

Beck, K. 1999. Extreme Programming Explained: Embrace
Change. Reading, MA: Addison-Wesley.

Bohlen, M., and Rinker, J. 2004. When Code is Context:
experiments with a whistling machine. Proc. of the 12th
ACM Int. Conf. on Multimedia, pp. 983-4. New York:
ACM.

Brown, C. 2003. Eternal Network Music. http://crossfade.
walkerart.org/brownbischoff2/

Brown, C., and Bischoff, J. 2003. Indigenous to the Net:
early network music bands in the San Francisco Bay
area. http://crossfade.walkerart.org/brownbischoft/

Bryan-Kinns, N., and Healey, P. 2004. DaisyPhone: support
for remote music collaboration. Proc. of the 2004 Conf.
on New Interfaces for Musical Expression, pp. 29-30.
Hamamatsu, Japan: ACM.

Burk, P. 1998. JSyn — A real-time synthesis API for Java.
Proc. of the 1998 Int. Computer Music Conf., pp. 252-5.
Ann Arbor, MI: ICMA.

Burk, P. 1999. WebDrum. http://www.transjam.com/
webdrum/

Burk, P. 2000. Jammin’ on the web — a new client/server
architecture for multi-user performance. Proc. of the
2000 Int. Computer Music Conf., pp. 117-20. Berlin,
Germany: ICMA.

Burk, P. 2004. Wire: a graphical editor for JSyn. http://www.
softsynth.com/wire/

Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G.,
Kollias, S., Fellenz, W., and Taylor, J. 2001. Emotion
recognition in human-computer interaction. IEEE Signal
Processing Magazine, January, pp. 32-80.

Cycling ’74. 2004. Max/MSP. http://www.cycling74.com/
products/maxmsp.html

Diamantaras, K., and Kung, S. Y. 1996. Principal Compo-
nent Neural Networks. New York: John Wiley and Sons,
Inc.

Duckworth, W. 2000. The Cathedral Project. http://
cathedral.monroestreet.com/

Dudley, H. 1939. Remaking speech. Journal of the
Acoustical Society of America 11(2): 167-77.

Freeman, J., Ramakrishnan, C., Varnik, K., Neuhaus, M.,
Burk, P., and Birchfield, D. 2004. Adaptive high-level
classification of vocal gestures within a networked sound
environment. Proc. of the 2004 Int. Computer Music
Conf., pp. 668-71. Miami, FL: ICMA.

Grey, J. 1977. Multidimensional perceptual scaling of
musical timbres. Journal of the Acoustical Society of
America 61(5): 1,270-7.

Joyce, D. 2005. Get your own show. http://www.
negativland.com/nmol/ote/text/getoshow.html

Kung, S., Diamantaras, K., and Taur, J. 1994. Adaptive
Principal Component EXtraction (APEX) and applica-
tions. IEEE Transactions on Signal Processing 42(5):
1,202-17.

Machover, T. 1996. The Brain Opera. http://brainop.
media.mit.edu

McCartney, J. 1996. Supercollider: A new real-time synthe-
sis language. Proc. of the 1996 Int. Computer Music Conf.,
pp. 257-8. Hong Kong: ICMA.

Neuhaus, M. 1990. Audium, Projekt fiir eine Welt als
Hor-Raum. In E. Decker and P. Weibel (eds.) Vom
Verschwinden der Ferne: Telekommunikation und Kunst.
Cologne: Du Mont.

Neuhaus, M. 1994. The Broadcast Works and Audium.
In Zeitgleich. Vienna: Triton. http://auracle.org/docs/
Neuhaus_Networks.pdf

Oja, E. 1982 A simplified neuron model as a principal
component analyzer. Journal of Mathematical Biology
15: 267-73.

Oliver, W. 1997. The Singing Tree, A Novel Interactive
Musical Interface. M.S. thesis, EECS Department,
Massachusetts Institute of Technology.

Auracle 231

Rabiner, L., and Schafer, R. 1978. Digital Processing of
Speech Signals. Englewood Cliffs, NJ: Prentice-Hall.
Radio Show Calling Tips. 2005. http://www.

pressthebutton.com/calling.htm

Ramakrishnan, C., Freeman, J., Varnik, K., Birchfield, D.,
Burk, P., and Neuhaus, M. 2004. The Architecture of
Auracle: a real-time, distributed, collaborative instru-
ment. Proc. of the 2004 Conf. on New Interfaces for
Musical Expression, pp. 100-3. Hamamatsu: ACM.

Roads, C. 1996. The Computer Music Tutorial. Cambridge,
MA: MIT Press.

Rubner, J., and Tavan, P. 1989. A self-organizing network
for principal-components analysis. Europhyics Letters
10(7): 693-8.

Sanger, T. 1989. An optimality principle for unsupervised
learning. In D. Touretzky (ed.) Advances in Neural Infor-
mation Processing Systems. San Mateo, CA: Morgan
Kaufman.

Tanaka, A. 2000. MP3Q. http://fals.ch/Dx/atau/mp3q/

The User. 2000. Silophone. http://www.silophone.net

Varnik, K., Freeman, J., Ramakrishnan, C., Burk, P.,
Birchfield, D., and Neuhaus, M. 2004. Tools Used While
Developing Auracle: a voice-controlled, networked
instrument. Proc. of the 12" ACM Int. Conf. on
Multimedia, pp. 528-31. New York: ACM.

Wright, M., and Freed, A. 1997. Open sound control: a new
protocol for communicating with sound synthesizers.
Proc. of the Int. Computer Music Conf, pp. 101-4.
Thessaloniki, Hellas: ICMA.

Yacoub, S., Simske, S., Lin, X., and Burns, J. 2003. Recog-
nition of emotions in interactive voice response systems.
http://www.hpl.hp.com/techreports/2003/HPL-2003-
136.html

